Application of Multivariate Empirical Mode Decomposition and Sample Entropy in EEG Signals via Artificial Neural Networks for Interpreting Depth of Anesthesia
نویسندگان
چکیده
EEG (Electroencephalography) signals can express the human awareness activities and consequently it can indicate the depth of anesthesia. On the other hand, Bispectral-index (BIS) is often used as an indicator to assess the depth of anesthesia. This study is aimed at using an advanced signal processing method to analyze EEG signals and compare them with existing BIS indexes from a commercial product (i.e., IntelliVue MP60 BIS module). Multivariate empirical mode decomposition (MEMD) algorithm is utilized to filter the EEG signals. A combination of two MEMD components (IMF2 + IMF3) is used to express the raw EEG. Then, sample entropy algorithm is used to calculate the complexity of the patients’ EEG signal. Furthermore, linear regression and artificial neural network (ANN) methods were used to model the sample entropy using BIS index as the gold standard. OPEN ACCESS Entropy 2013, 15 3326 ANN can produce better target value than linear regression. The correlation coefficient is 0.790 ± 0.069 and MAE is 8.448 ± 1.887. In conclusion, the area under the receiver operating characteristic (ROC) curve (AUC) of sample entropy value using ANN and MEMD is 0.969 ± 0.028 while the AUC of sample entropy value without filter is 0.733 ± 0.123. It means the MEMD method can filter out noise of the brain waves, so that the sample entropy of EEG can be closely related to the depth of anesthesia. Therefore, the resulting index can be adopted as the reference for the physician, in order to reduce the risk of surgery.
منابع مشابه
EEG Signals Analysis Using Multiscale Entropy for Depth of Anesthesia Monitoring during Surgery through Artificial Neural Networks
In order to build a reliable index to monitor the depth of anesthesia (DOA), many algorithms have been proposed in recent years, one of which is sample entropy (SampEn), a commonly used and important tool to measure the regularity of data series. However, SampEn only estimates the complexity of signals on one time scale. In this study, a new approach is introduced using multiscale entropy (MSE)...
متن کاملAnalysis of EEG via Multivariate Empirical Mode Decomposition for Depth of Anesthesia Based on Sample Entropy
In monitoring the depth of anesthesia (DOA), the electroencephalography (EEG) signals of patients have been utilized during surgeries to diagnose their level of consciousness. Different entropy methods were applied to analyze the EEG signal and measure its complexity, such as spectral entropy, approximate entropy (ApEn) and sample entropy (SampEn). However, as a weak physiological signal, EEG i...
متن کاملSample Entropy Analysis of EEG Signals via Artificial Neural Networks to Model Patients' Consciousness Level Based on Anesthesiologists Experience
Electroencephalogram (EEG) signals, as it can express the human brain's activities and reflect awareness, have been widely used in many research and medical equipment to build a noninvasive monitoring index to the depth of anesthesia (DOA). Bispectral (BIS) index monitor is one of the famous and important indicators for anesthesiologists primarily using EEG signals when assessing the DOA. In th...
متن کاملMulti-Scale Entropy and Neural Networks for Detection of Depth of Anaesthesia within EEG Signals
In recent years, multi-scale sample entropy (MSSE) is rapidly gaining popularity as an interesting tool for exploring neurophysiological mechanisms. In this paper, we propose a new method based on MSSE for on-line monitoring of the depth of anaesthesia (DoA) to quantify the anaesthetic effect with real-time electroencephalography by using MSSE. Empirical mode decomposition (EMD) was used succes...
متن کاملA Time-Frequency approach for EEG signal segmentation
The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 15 شماره
صفحات -
تاریخ انتشار 2013